If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-54X-180=0
a = 1; b = -54; c = -180;
Δ = b2-4ac
Δ = -542-4·1·(-180)
Δ = 3636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3636}=\sqrt{36*101}=\sqrt{36}*\sqrt{101}=6\sqrt{101}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-6\sqrt{101}}{2*1}=\frac{54-6\sqrt{101}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+6\sqrt{101}}{2*1}=\frac{54+6\sqrt{101}}{2} $
| -5/6u=-20 | | 10.1+u/5=-2.4 | | 5x+17-(2x+5)=0 | | 9x-17=29 | | x+7=-x+23 | | -3x-1=x-7 | | 6x-2=10-3x | | 1/6(n+9)=6 | | x^2-24x-945=0 | | 10-3x=5-10x+2 | | x(x-24)=945 | | -2(u-4)=5u+22 | | -5(x+1)=20 | | -6w+18=-4(w-1) | | -4+9x=x+20 | | 1,2x=-10,8 | | 2(x+9)=-10 | | 3x-4+2=7x-2 | | 3x-4+2=7x+2 | | x*15=60 | | x-3,6=0 | | 2x+24=6x-12 | | 4*9+3s=75 | | -8=2v+7(v+4) | | 20(15/x+8)=410 | | 6(x−5)=6x−30 | | X(x-17)-18x=)(x+16 | | 3q(3-2)=2(2q+5) | | 2(u-2)-7u=-39 | | 9m-4=-15+2m | | x-(0.0075*x)=306455 | | 40=(80/100)x |